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ABSTRACT

Maxwell's equations for linear media are reformilated through
linear operator and generalized transform techniques into an equivalent
matric integral equation. An exy”“ @it formal solution to the equation
is obtained recursively, providing . sequence of operations to be
applied to the electrical parameters of the medium to yleld the charac-
teristic existence conditions, the set of normal modes, and the electro-

» magnetic fields in response to given sources. The results are applicable
to.time-invar:lant s linear media which may be inhomogeneous, anisotropic,

nonuniform, dissipative, dispersive, with any source distribution.
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1. INTRODUCTION

Electromagnetic phenomena are completely described mathemati-
cally by Maxwell's equations. The fundemental problem of electromag-
netic theory is to transform the implicit description embodied in the
equations into explicit formulations of these phenomena through some
procedure for solving thé equations. It is a widely recognized truism
that Maxwell's equations are amenable to solution in only a few cases
possessing rather special simplifying features. A less restricted
type of problem is usually solved, if at all, by appeal to methods
often specifically designed for that particular problem. There remains
a T;lide class of problems that resist analysis. A general method of
attacking such problems is developed in this work.

In typical problems that do yleld to standard analysis, the
geometry possesses considerable symmetry, the medium consists of only
a few homogeneous regions, the coordinate system appropriate to the
structure of the system is one of the few in which the wave equation 13 
separéble , and the boundaries are of such nature and shape that it
becomes feasible to attempt a straightforward solution to Maxwell's
equations. The procedure is then to write these equations and the
associated boundary conditions for each region of the sﬁce and to solve
each such set 'of partial differential equations by separation of vari-
a‘bies. This introduces a mumber of physically meaningful separation
constants and arbitrary coefficients. The ;ndiiridual solutions must
then be made to fit the boundary conditions, particularly those arising
at the interfaces between regions of differ;lng electrical properties.
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This produces an auxiliary set of equations, no longer differential but

merely algebraic and transcendental, which, beside determining the arbi-

trary coefficients, provides a relation among the separation constents.
ml- characteristic relation, which may be a dispersion relation for a

| thim problem or a resonance condition for a cavity, is often

more illuminating and useful than the explicit expressions for the field

components themselves,

The class of problems for which solutions in closed form are
obtainable ‘in this way is quite small. If the problem is not sufficiently
simple to permit the above direct attack, recourse is often had to some
farm of perturbation approach. A similar but simpler pro't;leﬁl is first
solved exactly and the set of normal modes so obtained is used as a .
basis for representing the solution to the perturbed case as a superposi-
tion of modes of the simple case. The extent to which each normal mode
contributes to the expansion remains to be determined through the use of
orthogonality properties enjoyed by these modes by virtue of the symmetry
of the unperturbed configuration. Green's functions, the use of which
greatly extends the class of problems solveble by these methods, are
usually found in the same way.

The mathematicel elegance associated with the closed forms of
solution and of the expressions in terms of more or lessr'w:ll-‘lmwn and
well-tabulated functions often turns out to be an illusory advantage of
the above methods of solution. The characteristic equations, which
Wde in algebraic form implicit information about physicel effects
such as dispersion, scattering, or resonance, msy require exhaustive
studies of the mathematical properties of the constituent functions, as
is also the case vhen the distribution and flow of electromagnetic
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energy is to be computed from the field cMents. These tasks, though
they are facilitated by a host of recursion and orthogonality properties
possessed by these functions, must often be relegated to automatic
com;ters, vhich must in turn rely upon the power series expansions of
the elémentary functions involved.

Abstracting the significant features of these general and
powerful methods of solution, the following observations may be made.
Firstly, the linearity of the equations underlles the methods, heavy
réliance being placed upon the superposition principle. Secondly, the
search for closed forms of solutions may be self-defeating in that
their complexity may inhibit their interpretation and appiidation.
m, the recursive, reciprocal, and orthogonality propertieé of the
solutions so obtained are actually properties of the normal modes asso=-
ciated with a glven configuration of materials in the medium, not Just
of the various elementary functions involved, which are after all
defined as solutions of the separated wave equations. Fourthly, the
algebraic characteristic equations effectively supplant the original
differential equations, are equivalent to the Maxwell equations spe~
cialized to the particular medium, and contain essentially the same
physical information. Finally, these characteristic equations are
entirely determined by the electrical constitution of the medium and
should be obtainable without reference to the associated electromagnetic
fields.

These principles are the foundation for the method of solution
to be developed. Primarily, the goal is to reformilate the contents of
Maxwell's equations so as to iead. ‘from a description of the spatial
distribution of matter in the medium directly to a single characteristic
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equation which prescribes the conditions for the existence of a mode.
Secondarily, a formulation is sought which will yield the complete set

of normal modes for any linear medium. The form in which the results

.are to be expressed 1s to be left arbitrary, the choice to be made in

advance on the basls of convenience and practicality.

In view of the nondifferential nature of the characteristic
equations whose content is equivalent to that of the original equations,
the present approach seeks to eliminate the differential character of
the equations at the outset. This can be accomplished by means of a

transformation from coordinate space to some new domain in which differ-

"entiation is replaced by other operations which also absorb the asso-

ciated boundary conditions. Full advantage is taken of the linearity
of the problem, in assuming representations of unknown functions as
general summations, in expressing the response to several excitations
as the superposition of individual responses, and as the essence of the
reformulation in terms of linear operator techniques from which general
properties of eclectromagnetic waves may be deduced.

A guiding principle in the reformulation of Maxwell's equations
is that no information which could be extracted from the original equa-
tions be rendered unobtainable from the new machinery. This requires
that all information contained in a description of the electrical pro-
perties of the constituents of the medium be refained intact through the
vazjious transformations, operations, and manipulations to be prescribed.

in' effect, there will be presented an alternate set of mathematical

‘equations ‘to that of Maxwell through which the electromagnetics problem

of which they are a model msy be solved. It is claimed that the new

set of equations may profitably and without loss be considered as an



alternate starting point for the investigation of a large class of

problems in electromagnetic theory.
P Beyond that, it will be shown that the new formulation is :
sub;ject to a systematic process for extracting the complete solution to
the pr'oblem. Thus, & unified, systematic, formal solution to Maxwell's
equations for linear media will be presented. The solution will, of
course, be only formal, for the machinery developed must await an input
in the form of a precise description of the medium fo;'wh:lch the solu-
tion is desired before it can yield the dispersion relation or other
existence conditions, as well as the normal modes themselves; as the
output. o
The resolution process to be developed may become exceedingly
. | cumbersome in many cases, as a host of quadratures may be called for.
This will be a manifestation of the complex nature of the problems to
be attacked and of the generality of the method. Automatic computers
of a high degree of sophistication may well be required to render the
process an efficient one. However, an added feature of the method is
that the complexity of the calculations will be to some extent under
the control of the user.
No claim is made to adherence to strict mathematical rigor in

7 what follows. The arguments presented are intended to demonstrate the .

§

plausibility of\the results. Historical precedents for various methods
to:be employed will be indicated as the appropriate stages are reached.

‘A computationally trivial illustration of the theory will be given which -
is, however, sufficiently general to be of interest. The example will
be further specielized to a specific medium of the gyrotropic type in
order to illustrate the nature of the computations required. Minally,
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possible refinements of the theory will be indicated, with suggestions

for improving and extending the validity, facility, applicability, and
utility of this reformilation of Maxwell's equations,




2. SCOPE OF PROBLEM

The problem to be attacked herein is that of determining the
characteristics of the electromasgnetic fields which may exist in a given
linear medium in response to known sources. To be more precise, the
restrictions on the medium are that there be a definite, linear, time-
invariant relation among ‘the field intensity, flux denslity, and current
dehsity vectors at each point in space, These conditions are sufficient-
ly week to permit consideration of a medium which is nonuniform, inhomo-
geneous, anisotropic, lossy, with or without sources. It is required
merely that the region be describable electrically by giving the three
teﬁsor fields of capacitivity, permeebility, and conductivity at every
point. The problem ls to extract from this data the characteristics of
the macroscopic electromagnetic fields which may be excited in the region
of interest by sources within or without it.

The time-invarieace imposed upon the medium permits a consid=-
erable simplification of the problem in that a hermonic, steady-state
analysis will suffice, with little loss of generality. In additionm,
this condition permits the combination of two of the three tensor fields,

the capacitivity and conductivity, into a single permittdvity tensor

field. Thus, an arbitrary geometrical configuration of lossy dielectric

and permeable materials with any physical, even discontimuous, variation

of electrical properties is describeble by two dyadic functions of posi-

. tion and frequency. The condition thet the relation between the field

intensities and flux densities be an unambiguous one imposes one final

restriction upon the systems to be considered. It is required that the
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constitutive dyadics ,‘both the vermittivity and the permeability, have

nonzero eigenvalues.

In a system satisfying the conditions outlined above, all the

~ relevant electrical information concerning the system will be contained

in the two constitutive tensor fields. They alone are sufficient to
prescribe the form of the normal modes of the medium. If the sources,
both the electric and magnetic current densities, be specified as well,
the two dyadics will determine the actual electromasgnetic field config-
uration everywhere in space. It is proposed to prescribe a set of
operations for transforming the information contéined in '_the ﬁo cone-
stitutive dyadic functions into information ebout the electrmtic '
fields which will exist in the given medium.

Under the stipulated conditions, the macroscopic electromag-
netic fields and source currents will be complex vector functions of
position, time-harmonic at the radian frequency w, and describable by
three-component vector functions in some arbitrarily chosen coordinate
system. The electrical constitution of the medium is specified by three
tensor fields: the relative capacitivity, A(r), the relative permea-
bility, p(r), and 1.:he conductivity, o(r), where r represents the posi-

tion vector. By virtue of the nonuniformity and inhomogeneity of the

- medium, these tensors are functions of position which may have discon-

tinuities, for example at the interface between a dielectric and free
space. If the medium is isotropic, the tensors will reduce to scalars.
| In order to exhibit Maxwell's equations explicitly, the
following definitions will be used. They are appropriate for the

rational mks system of units.




Permeability of free space:

Capacitivity of free space:

Speed of light in vacuo:

Intrinsic impedance in vacuo:

% i
b
%
#

: Wave number in vacuo:

B

I Imaginary unit:

tivity and conductivity tensors:

Mo

e(r) = k(r) - J(Vx)o(r)

c2u°¢° =1
R o fe,
k= m/c

£ aa

] The permittivity tensor field is a combination of the relative capaci-
;

(2.1)

. The permittivity and permeability dyadics, -¢(r) and p(r), have been

assumed to be nonsingular.

For convenience, the electromagnetic field quantities will be

| expressed in the following form, wherein E(r), M(r), Ce(r), and Cm(r)

. are complex, vector functions of position and, implicitly, of the wave

number.

Electric field
Megnetic field
Electric current density

Magnetic current density

E(r)e"m (2.2) .

(3/MM(z)ed®™  (2.3)

(x/sMe(r)c (r)e?™  (2.4)

ku(r)c (r)ed™  (2,5)

In terms of these quantities, Maxwell's equatiéns take the

form

curl E = kuM -kucm

curl M = ke€E -kece

(2.8) .
(2.7)

These equations are to be satisfied at every point of the space. Bound-

ary conditions, other than the regularity of the solutions, need not be
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specified since they have been incorporated in the spatial variation of
the constitutive tensors, ¢(r) amd p(r).
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3. OPERATOR FORMULATION

Maxwell's equations are a pair of coupled vector partial dif-
ferential equations with variable tensor coefficients. For the purpose
of exhibiting a general solution to these equations, it is convenient
to reformulate them as a single operator equation. This eclipses the
multipie and coupled character of the equations and permits considera-
tion of Maxwell's equations as an abstract relation between the svou.rces
end the resultent fields. The formilation will be that of en abstract
operator acting upon an abstract quantity representing the response to
transform it into one that represents the excitation. Ultimately, this
will fﬁcilitate t.he' concretization of an abstract solution to this |
general j:rﬁblem.

Operator mephods are a well-known and potent tool iﬁ quantun
me.chanic.s, but less common in electromagnetic theory. As those of a
11near.algebra, such methods have an intrinsic value in educing certain
invar:lanf properties of the solutions to operator equations, such as
r’eciproc;ti:y",k or the reality of the eigenvalues. As such, these operator
methods have been explored by Bresler, Marcuvitz, and o*l'.hers:""8 for
their applicability to electromagnetic theory problems., Herein, these
aspects of the operator calculus will not be pursued; it will be intro-»
duced mainly to facilitate the formmlation of an abstract, formal solu-
;b:lon t0o Maxwell's equations.

From the operator point of view, Maxwell's equations prescribe
‘a set of operations to be performed upon the electromagnetic field and

sau"rcg vectors, the results of which, when equated, express the physical



interrelation among the fields. As the flelds are three«vectors, the
operators acting upon them should be, apart from scelar multipliers,

three~dyadics. The permittivity and permeability tensors are such dyade

ics; when applied to the field intensity vectors, they produce the flux

density vectors. Similarly, insofar as it produces a new vector field
from a given one, the curl operation should be expressible as a dyadic
operator.

This is indeed possible, in any particular coordinate system.
Thus, in a rectangular coordinate system, (x,y,z), the three-dyadic

representation of the curl operator is

- -
. - 2
0 -5 g
curl = % 0 -53; (3.1)
-2 2 o
w0

In a cylindrical, (p,#,z), or spherical, (r,0,4), coordinate system,

similar dyadic representations are

Cylindrical:
. ) )
o .3 13
3z b 30
d 3
curl = Ty 0 -5 (3.2)
1 3 109
"7 % %P ©
b -
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Spherical:
3 1 0? 3 ]
; . 1
0 “THn6 Teinod sne
1 Q 1 9
curl = | T3 0 TFET - (33)
12 13 o
"r% rort
L -

The curl operator may thus be thought of as an ébstract dyadic operator
which may be given an explicit expression in any coordinate system.

There may now be introduced twe immittance operators as combi-
nations of the above operators, obtained formally by the rules of matrix
in_version and multiplication. The impedance operator is a three-dyadic
defined as

imp = (ke) Teurl (3.4)

and the admittance operator is

adn = (k) teurl (3.5)

The two field intensity vectors may be combined into a single,
abstract, six-component field vector, S(r), and the two excitation vec-
tors into a source six-vector, C(r), whose structures are exhibited in

the following partitioned colummn vectors.

s(r) '[E(r)] c(r) = “el) (3.6)

M(r) ¢ (r)

The Maxwell operator is an abstract six-dyadic operator which
will operate upon such six-vectors. Its structure is given by the
following partitioned matrix.
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maxl = (3.7)
- adm 1 :

Here, 1 represents the unit three-dyadic.
In terms of the above abstract quantities, Maxwell's equations
become the single operator equation

maxl S(r) = C(r) (3.8)

The six-dyadic, differential operator, maxl, incorporates the physical
interaction among the electromagnetic fields as well as the electrical
properties of the medium.

In abstract terms, the solution to the problem requires the
determination of the operator inverse to maxl, that is, that operﬁtor
or process which, when applied to the source, C(r), will yield the fields,
s(r).
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4, TRANSFORM FORMULATION

The operator form of Maxwell's equations, Eq. (3.8), involves
a differential operator acting upon the unknown function. A direct
integration of this differential equation, ssy by substitution of trial
functions, is not feasible since the salution camnot be expected to be
expressible in closed form in terms of known, tabulated, elementary
functions. Realization of this raises the question of Just what will
constituteA a solution to the problem; that is, how may the sixecompo-
nent vector function of position, S(r), which solves the equation be
exhibited?

4 This question of the presentation of the solution may be re-
solved by choosing some convenient basis of representation for the
function to be described, much as a coordinate system is chosen for
the mensuration of the space. The basis will consist of a set of func-
tions with the property of completeness, at least with respect to the
class of functions vwhich are sufficiently regular to be possible solu-
tions to the physical problem here considered. The unknown solution
will then be expressed as an expansion in this complete set. After the
arbitrary complete set has been selected, the problem remaining is that
of determining the generalized Fourier coefficients of tixe expansion.

By the sbove procedure, the problem will have been transformed
frén the solving of a differential operator equation in position space
to the solving of a corresponding equation in the space of the Fourier
coefficients. The spatial varisbles will have been eliminated, just as
the Laplace transform typically eliminates the time variable from an



equation by transforming to the frequency domain. Most important, the
differential operator in physical space will have been replaced by one
of an algebraic or integral nature in transform space.

| In electromagnetic theory, a form of the process contemplated
liere w;as developed by Schelkunoff9 to produce the generalized telegra-
phist®s equations. In a typical problem of propagation in a nonuniform
waveguide, expansion functions are chosen from the solution of a related,
simpler problem, say that of a limiting case of the actual one. The
resulting transformation eliminates the transverse variables, so that a
set of coupled ordinary differential equations in only the a:dal variable
is obtained for the coefficients of the expansion. 'l‘hese'te.legraphist's
qua‘bions are of the nature of transmission line equations and the cou-
pling coefficients provide much information about the propagation of
modes in the nomuniform system. This process is somewhat generallzed
herein, where the expansion functions remain arbitrary, all the spatial
variables are eliminated, the differential character of the equation is
entirely suppressed, end vector and dyadic functions are treated. The
procedure will yield an equation for the transform variables to which a
definite set of cperations may be applied to extract the -complete
solution.

The translation from the original to the transform space must
be invertible; that is, a solution obtained in transform space should be
subject to being carried back to the original domain, if desired. There
wi].l then be no loss of information attendant to the comsideration of
the pro'blém in the transform space.

The original space is indexed by the position vector r, which
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may be considered a composite index comprising the three coordinates of
the space. In the transformation, each coordinate or spatial index is
gliminated at the cost of introducing a corresponding transform i:;dex,
:]uéf as the frequency variable supplants the time variable when a Fourier
transflcmn is epplied to a problem in the time domain. The transform
spece will thus be indexed by a composite 1nde¥, s. The transformation
of a function of positionm, g(r), is achieved by multiplying it by the
transformer t(s ,r) and integrating throughout the space. This elimi-
nates the position index r and leaves the transform G(s), a function
of the composite index s. The inverse transformation is achieved by
multiplying the transform G(s) by the transformer 'l‘(r,é) | and inte-
grgting or sunming, as appropriate, over each variable of the composite
index, s, leaving the function of position, g(r).

Such multiple integrations and summations as are involved in
the above processes will here be denoted by the generic summation symbol
$. To be precise, this symbol will dictate that the expression which
follows it be integréted or summed over the complete range of the vari-
ables which are contained in the repeated, dummy, composite indices
appearing in the swmmand. Summation will be implied for the discrete
variables in the composite index and integration, possibly with appro-
priate weight functions, for the continuous variables. Thus, the above
transform pair will be written '

G(s) = $ t(s,r)g(r) g(r) = $ T(r,s)G(s) (k1)
The unit function for such summations will be denoted by 1(u,s). It has

the property expressed by

G{u) = $i(u,s)0(s) (4.2)

Lot i —
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This idemfactor thus comprises a Dirac delta function fo: each variable
in the composite index whose range is a continuum, a Kronecker delta
for each discrete variable, and a unit dyadic, as required.

- As an 1llustration of the use of this compact notation, con-
sider é function of position, g(r), in a cylindrical coordinate system
to which it is desired to apply a Fourler-Bessel ‘i;fansform. In this
case, the composite index r represents (p,d,z) and the transformation

will lead to a space indexed by 8 m (a,n,8). The transformer t(s,r)

and its inverse T(r,s) are given by
t(s,r) = t(q,n,B;p,0,2) = e-J(n¢+62) Jn(qp) o (k.3)

r,8) = Mp,0,zi0,m,8) = (2x)2 IPHE) 5 (qp) (4.1)

The ranges of p and q are O to », with weight functions p and q, respec-
tively; the range of ¢ is O to 2x, that of n is all positive and negative
integers; the ranges of z and B are -® to ». Accordingly, Eqs. {L4.1)

would in this case be interpreted as
@® 2,‘ [
6(q,n,8) = [az 2[«m l[pd" t(a,n,;0,8,2)8(0,8,2)
" l®

a(ps9,2) = [a8 I [ada (0,9,259,0,8)0(a,m,)

-]

For the problem at hand, the spatial t“unctions -and their trans-
forms are six-vectors. Correspondingly, the transforﬁers w;ll be six-
dyadics. In fact, let there be chosen some convenient dyadic complete
orthonormel set c(r,s) with its inverse d(s,r). With no loss of
generality, these six-dyadics may be taken to be diagonal. The complete-
ness property is expressed by '
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$ c(r,8)a(s,p) = r,p) (h.6)
and that of orthonormality by
' $ a(u,r)e(r,s) = 1(u,s) (.7)

The transformation law for a column vector v(r) and the inver-
; sion of its transform V(s) will then be
v(r) = $ c(r,s)vV(s) V(s) = $ d(s,r)v(r) (4.8)
The transformation of a row vector w(r) is to be performed in the con-
verse manner. - .
w(r) = $ W(s)a(s,r) W(s) = $w(rde(r,s) - (4.9)
The properties expresszd by Egs. (4.6) and (L4.7) then g\xaz;anfee that the

form of the scaler immer product of two vectors will be preserved by .the

transformation.
$ v(r)v(r) = $ W(s)V(s) . (k.10)

Another consequence of these transformation laws is that a dyadic kernel

e . =

" operator equation in position space such as x(r) = $ A(r,p)v(p) will bde

\ translated into an equation of similar form in transform space, X(u) =
$ B(u,s)V(s), provided that the transformation law for the dyadic oper-
P . ator A(r,p) is teken as

B(u,s) = $ d(u,r)A(r,p)c(p,s) (x.12)

; It follows that any linear dyadic operator in position space

i

| whose nature is such that there could be constructed for it a represen-
tation as a kernel of an integral operator will have a representation in

transform space in the form of a dyedic function of two composite trans-

form indices. This transform of the operator may be obtained by allowing

the"pqsition-space operator to act upon c(r,s), premultiplying the
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result by the dyadic d(u,r) and integrating throughout the space, as
in Eq. (4.11). The actual kernel representation of the operator in

coordinate space need not be found explicitly; indeed, that kernel might

' be highly singular, possibly involving delta functions and thelr derivae

tives. This situation is analogous to that which obtains in the qgantum
mechanical representation of dynamical variables as‘operat'.ors.:"o"l3
The hypothesis is now .made that the abstract maxl operator of
Eq. (3.8) is such an operator. The rigorous justification of this hy-
pothesis will be held in abeyance while its consequences are explored.
Proceeding now with the transformation of the operafor form of
Maxwell's equations, let F(s) and Q(s) be the transforms éf {'.he vectors
S(r) and C(r), respectively. That is,
s(r) = $ c(r,s)F(s) F(s) = $ d(s,r)s(r) (k.12)
c(r) = $ c(r,s)a(s) As) = $a(s,r)e(r) - (k.13)
In accor;iance with the preceding discussion, let the transform of the
maxl operator be D(u,s).
D(u,s) = $ d(u,r) maxl c(r,s) (k.2k)
Upon premultiplying both sides of Eq. (3.8) by d(u,r), substituting the
expansion for S(r), and integrating, Maxwell's equations become the

operator transform eqp.ation
$ D(u,s)F(s) = Q(u) ' (4.15)
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5. SIGNIFICANCE OF REFORMULATION

The equation obtained here for the transforms of the electro-
magnetic fields, Bg. (4.15),

$ D(u,s)F(s) = Q(u)

merits closer examination. Despite the notational disguise, it is

entirely equivalent to the original Maxwell equations,

In this equation, F(s) is an unknown six-vector, the transform
of the desired field vector S(r). The six-vector Q(s) is the known
transform of the given source vector C(r). - D(u,s) is a six-éyad:lc
kernel, a function of two composite indices of the transform space and,
implicitly, of the wave mumber, k, as a parameter. It incorporates in
an intimate combination ‘

1) the physical law of interaction of electromagnetic fields, namely
that, in the steady state, one field determines the spatial rate
of change of the other, as expressed by the curl operation;

2) the electrical constitution of the medium filling the space, as
described by the tensor capacitivity, permeability, and conductive
ity at every point;

3) the geometrical configuration of the material bodies whose arrange-
ment in space is incorporated in the spetial variation, particularly

, the discohtimuties, of the constitutive tensors;

4)  the boundary conditions which would have to be appended to the orig-

inal partial differential equations to presciibe the field discomti
; nuities &t interfaces between regions of uﬂm electrical
properties;
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5) the basis of representation selected to express the spatial variae-
tion of the fields, as embodied in the dyadic transformers c(r,s)
and d(s,r).

‘Ihe's'tmation operat:lon‘ glves the equation the character of a generalized

integrﬁ equation of the first kind, with Q(s) as the forcing function,

F(s) as the unknown function, and D(u,s) as the kernel.

" A review of the procedure involved in obtaining the dyadic ker-
nel D(un,s) will show that no information about the electromagnetic system
has been lost in the transition from the original form of Maxwell's equa-
tions to the present formulation. An appropriate coordinate .system for
the space having been chosen, the medium is first describeci m;themat:lcally ‘
by giving the two constitutive dyadicé, ¢(r) and p(r), at each point in
space. These two constitutive matrices are inverted and then premalti-
plied into the dyadic representative of the curl operator to. fprm the
immittance operators imp and adm, as in Egs. (3.4) and (3.5). These
three-dyadic operators are arranged in a six-dyadic as in Eq. (3.7) to
create the maxl operator for the medium in question. A diagonal dyadic
complete set c(r,s) and its inverse d(s,r) are selected as a basis of
representation. The maxl operator is applied to c(r,s) and, finally,
the integrations prescribed in Eq. (4.1k) are performed to produce the
kernel D(u,s). As each of these steps, in particular the transformation,
is reversible, it is clear that all the pertinent information about the
system has been retained in the process of obtaining D(u,s). The problem

may hence be solved just as thoroughly by an atteck on the new equation,

Bg. (4.15), as on the original Maxwell equations.

The most important characteristic of D(u,s) as a replacement

for the maxl operator is the absence of spatial coordinates snd of
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differential operators. A major advantage of the reformlation of
Maxwell's equatioﬁs lies in that as expressed in this integral equation
form, approximation methods, variational techniques, perturbation
apprﬁaches s and abstract operator analyses may be applied to the problem
more eﬁsily than in the original formulation as coupled, vector, partial
differential, variable coefficient equations. 1In fact, a complete, exact
solution to the transformed equation may be extracte.d thz;ougtx the appli=-
cation of a definite set of operations to the known kernel D(u,s) and
source Q(s). Any solution, however obteined, for F(s) constitutes the.
expansion coefficients for the field vector S(r) in the selected basis
of rei:resentation ¢(r,s). The solution F(s) may be transformed back to
the desired S(r), in accordance with Eg. (4.12), to obtain both the
electric and magnetic fields at every point in space.

This last step of transformation back to physical space will
often be superfluous as much information may be gleaned from the trans-
form itself., For exeample, the existence of transverse electric or trans-
verse ma:gnetic waves may be deduced from a simple examination of the
transform F(s) for any vanishing components. . Multiple solutions at a
given frequency are likewlse reflected in the multiplicity of the solu-
tion for the transform F(s) at that wave number.

Less trivially, in the case of a sourceless region for which
the normal modes are desired, Maxwell's equations in both the original
and transformed forms will be homogeneous and solutions will exist only
und'er certain conditions. These conditions will apply Just as well for
the solution of the homogeneous equation in tra.nsform space, Typically,
these existence conditions determirnie the eigenfrequencies of the system
by imposing a restriction on the wave mumber, k. Thus if the system |
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under consideration is a cavity, its resonant frequencies will be ob«
tained in solving the transformed equations, without the necessity of

transforming back to coordinate space., Similarly, if propagation of:

noi'mai modes on a gulding structure is considered, the conditions for

the existence of solutions to the homogeneous transformed equation w;lll
constitute the dispersion relation for the medium. 'In a propagation
problem the propagation constant appears simply as another parameter and
the characteristic existence condition will prescribe a relation between
tﬁe wave number and the propagation constant.

‘ Sti1l more information about the system may be extracted from
the transformed solution by a limited form of inversion of ti:e tra.n?-
fom. Thus, certain quadratic forms in the fields may be evaluated in
terms of the transforms without first obtaining the fieldsexplicitly.
Some duadratic forms of importance are

Wy(r) = E'(r)e(r)E(r) (5.1)
V(r) = M(r)u(r)M(r) (5.2)
N(r) = E¥(r) x M(r) (5.3) .

vhere * indicates the complex conjugate and + the Hermitian conjugate of

a &uantity. . The interest of these quantities arises from the relati’c,!':s

time-average complex electric energy density = (e o/u)we
time-average co@lu magnetic energy density = ('Jh)wn
time-average complex Poynting vector = (1/23M)m

In order to calculste these expressions with only a pertial inversion of

the transforms back to position space, some of the dyadics to be used

will be partitioned, in the mamner of Eqs. (3.6),as follows.
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F(s), the six-vector transform of the field vector S(r), parti-

tions as
V(s) o
F = oh
(s) I;(s):l (5.4)
The diasgonal six-dyadic c(r,s) may be partitioned as
_ e(r,s) (o] -
e(r,s) = [ :l (5.5)
0 h(r,s)
The transformation laws for the ind.:lﬁdual field three-vectors are
therefare
E(r) = $ e(r,s)V(s) M(r) = $ h(r,s)i(s) (5.6)

In addition, let j denote the skew-symmetric dyadic associ-
ated with a vector n. That is,

nl e -!15 n2 \
n = | n, ﬂ = n3 0 - (5-7)
1 om0

The component of the vector N(r) along any vector n(r) may then be
expressed as
Nr)en(r) = E'(r) [-h(r)] M(r) (5.8)
Introducing the three auxiliary three-dyadic functions of

three composite indices

W(u,r,8) = e'(r,u)e(r)e(r,s) (5.9)
Wu,r,8) = B'(r,u)u(r)(z,s) (5.10)
P (u,r,8) = o'(f,u) [-4(r)] n(r,s) (5.11)




26

the three quadratic forms of interest will be cbtainsble directly from
the transforms of the fields through

W(r) = $ VW(u,r,e)(s) (5.12)
N(r) = $ T ()W(u,r,s)I(s) o (5a13)
Mr)n(r) = $ V'(u)B,(u,r,8)K(s) (5.24)

It may be noted from Bys. (5.12) and (5.13) that e passive
medium will be cheracterized by dysdics W° and W® that are positive defi-
nite and that this property is directly related to the positive definite-
ness of the constitutive dyadics, as may be seen from Bgs. (5.9) and
(5.10).

Less trivial qualitative and semi-quantitative information
sbout the system will be obtainsble from an examination of the character
of the P;Jynt:l.ng vector field. This may be inferred from By. (5.14), in
vhich n will typically be a unit vector in some direction of interest.
Thus, a Poynting vector field which is found to have only an axial compo-
nent will evidently characterize a propagating wave., Similar qualitative
characterizations may be made of such phenomena as reflection, scattering,-
radistion, backvard waves.

Thus, the transform equation, Eq. (4.15), is, in principle,
enti'rel,v‘ equivalent in content to the original Maxwell equations. It
has the merit that its solution may be systematized. |




6. INTEGRAL EQUATION FORMULATION

As pointed out earlier, the operator transform equation for
the eléctromagnetic fields obtained herein has the aspéct of a somewhat
generalized integral equation of the first kind. Such equations are
generally intractable by their very nature. Furthermore, the quarntities
involved in the equation are dyadics of sixth order. In effect, then,
the transform equation in its present form, Bg. (L4.15), may fairly be
sald to be ummanageable. '

The six-dyadic kernel D(u,s) has, however, been 56 constructed
that a considerable simpiification of the equetion is possible. The.
order of the dyadics to be manipulated may firstly be reduced from six
to three, at the cost of introducing a pair of coupled equations for the
individual field transforms. But then these equations may be recombined
into one equation, still with third-order dyadies, of the form of an inte-
gral equation of the second kind, which is amenable to analysis. There
will then remain merely to adapt the classicel Fredholm theory for such
equations to the somewhat generalized type of integral equation to be
obtained here. This process will lead ultimately to a complete, formal
solution to Maxwell's equations. '

The reformilation of the equations continues now with the
ﬁ:.zjther dissection of the six-dyadics imto partitioned matrices. To
accoupany the partition of the field fector F(s) in Eq. (5.h), the

source vector Q(s) partitions as
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W(s)
Qs) = (6.1)
: [ns)]

In view of the comstruction of the maxl operator, Eq. (3.7), and of

" the orthonormality of the transformers, c(r,s) and d(s,r), as expressed

by Ba. (4.7), the six-dyadic kernel D(u,s) has the following highly
significant structure,

D(u,s) 1(u,s) - Z(u,s) (6.2)
u,s = .
= Y(u,s)  1(w,s)

The three-dysdic immittance kernels, Z(u,s) and Y(u,s),- are defined by .
this equation. _

| Introducing these partitioned forms of the matrices into the
transform equation, Bq. (4.15), it is seen that the equation can be
decomposed into the network equetions

V(u) = W(w) + $ Z(u,s)I(s) (6.3)
I(u) = J(u) + $ Y(u,s)v(s) (6.4)

In these coupled equations, the transformed field three-vectors V(s) and
I(s) are the unknm.rns; the three-vectors W(s) and J(s) are transforms of
glven sources; the impedance and admittance kernels Z(u,s) and Y(u,s) are
known three-dyadics, obtained by inspection of Bq. (6.2). A comparison
is invited of these equations with the static network equatims of

4 or with the dynemic telegrephist's equations of Schelkunoff,’

The final phase of the reformilation process will now be

Ma.rcuvitzl

expounded, with e view to uncoupling the two equations and producing an

equation much like an integral equation of the second kind, for which a
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general theory may be formilated. The uncoupling process is analogous
to that which, for a homogeneous medium, produces the wave equation from
the coupled Maxwell equations; it involves simply the substitution of

. Bq. (6.4) into Eq. (6.3).

Some preliminary definitions will be found to be convenient,

. It is profitable to introduce a new parameter into the equations, for

ease of analysis. While this mey be done entirely arbitrarily, it is
particularly convenient, in case the constitutive tensors are independ-
ent of frequency, to let this new parameter, A\, absorb and £ill the rolé
of the wave mmber, k., This will facllitate the ;pbysical interpretation
of some of the equations to be obtained. It should be emphasized that
the present restriction to freéuency-independent media is made merely
for convenience of interpretation and will be lifted later,

The system being studied possesses some characteristic dimen-
sions. From these, let there be selected a coﬁven:lent quantity, A,
with the dMsims of an area, to characterize the physical size of the
gystem., The dimensionless parameter, A, is defined as

A = 1/x°A (6.5)

The three-dyadic kernel, X(u,s), is defined by
K(u,s) = X°A $ Z(u,v)¥(v,s) (6.6)

A review of the steps involved in calculating the two innﬁttance kernels
Z(u,s) and Y(u,s) will readily show that, in the case of a frequency-

independent medium, the kernel K(u,s) 1s independent of the vave mmber ,
k, and hence of the parameter A. Finally, the compound source, U(s), is

given by .
‘ U(u) = W(u) + $ &(u,s)7(s) (6.7)
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A direct substitution of Bq. (6.4) into Eq. (6.3) now yields
the operator transform reformilation of the electromagnetics problem in
generalized integral equation form,

V(u) = U(u) + A $ K(u,s)V(s) ' (6.8)

This equation 1s to be solved for the unknown three-vector V(s) for a
given compound source U(s), kernel K(u,s) and parameter A. When the

solution is introduced into By. (6.4) to calculate I(s), the complete
solution for the transformed fields is obtained.
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T METHOD OF SOLUTION

The final reformulation of Maxwell's equations obtained here,

B. (6.8),

V(u) = U(u) + A $ K(u,s)V(s)
has the aspect of & linear Fr:edholm integral equation of the second kind.
The classical Fredholm theory for such equations mst, however, be modi-
fied for the case at hand since the eq{xation is somewhat more general
then the prototype equation treated by Fredholm. In the present case,
e generalized, miltiple sumstion replaces the single integration of the
original Fredholm equation, the range of summation is generally not a
" simple closed interval of integration, and dyadic quantities eppear in
the summands. _

This last imnovation, represented by the dyadic character of
the kernel, requires a nomtrivial modification of the Fredholm theory.
For this t'.heor,w,'l'j"?0 is usually developed in terms of determinants with
elements formed from the values of the kermel at various points. Were
this process‘carried out formally in the present case, there would be
obtained determinants with noncommiting, matric elements, whereupon the
theory would break down. A formmlation is required which avoids the
formation of determinants and is applicable to this matric equation.

Such a formulation can be developed, in close analogy to that
presented by Smithies,l7 but with certain modifications demanded by the
dyadic chaz;acter of the kernel, The quantities normally given by deter-"
nﬁ.na.p:ts will, in this matric case, be expressed in terms of a set of

recuréion relations.
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The method of solution to be presented here takes full advane
tage of the linearity of the equation by providing a solution for the
case of just a unit source function. The solution for an arbitrary

source can then be obtained by superposition. The resolution of the

problem posed by Ey. (6.8) reduces then to the search for the resolvent

kernel H(u,s;\), which plays the role of a Green's function for the

equation, in terms of which the solution to the equation

V(u) = U(u) + r $ K(u,s)V(s) (7.1)
for an arbi'l;.rai‘y source U(s) will be

V(u) = U(u) + A $ H(u,s;A)0(s) ' .. (7.2)

Upon substituting this assumed solution into Bq. (7.1), noting that it is
to be satisfied for all sources U(s), it is found that H(u,s;\) mst

satisfy the resolvent equation

H(u,s57) = K(u,5) + A $ K(u,v)H(v,s;)) C(7.3)

The resolvent H(u,s;\) is a three-dyadic kernmel associated
with, and entirely determined by, the kernel K(u,s) of the equation.
A study of its properties is equivalent to an analysis of the original
electromagnetics problem. In fact, solving Bg. (7.3) for H(u,s;\) will
yield the solutions for the transformed fields successively from Egs.
(7.2) and (6.4). Some of the more significant properties of the resol-
vent are expressed by the following relations, which are fairly readily
derivable from Bq. (7.3). )

$ K(u,v)H(v,85n) = $ H(u,v;A)K(v,s) (1)
H(u,s;o) = K(uys) (7-5)‘
Busih) o § Hu,viA)E(y, 80) (7.6)
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R(u,s;7) ~ H(u,s;8) = (AE) $ H(u,v;\)H(v,s;8) (7.7)

In Ba. (7.6), no summation over A is intended, of course, although it is

repeated in the sumand; it i1s merely a parameter, not a dummy canpoﬁte

- index, .

Another important property of the resolvent, following immedi-
ately from Bq. (7.2), is that as long as H(u,s;\) is finite, the homo-
geneous equation

V(u) = A $ K(u,s)v(s) (7.8)

will have only the trivisl solution V(s) = O. .The homogeneous equa-
tion will have nontrivial solutions, however, but only for cértain
characteristic values of A. At these values, H(u,s;\) will have to
'b_eéome infinite.

In order to gain greater insight into the nature, structure,
and properties of the resolvent, it is instructive to consider a very
special but important case of Eg. (7.l). This is that of a degenerate
kernel, in which case it is possible to glve an explicit expression, in
closed farm, for the resolvent. A degenerate kernel 1s one that can be
factored so as to separate its two composite indices. Explicitly, an
n x n dyadic kernel K(u,s) 1s degemerate if it can be expressed in
factored form as

K(u,s) = A(u)B(s) ' (7.9)

where A(s) is an n x r dyadic function of jJust one composite index and
ﬁ(s) is an r x n dyadic functlon of one index. Let the obverse of the

'degenerate kernel be defined as the r x r comstant dyadic

R = $B(s)A(s) (7.10)
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In the degenerate case, then, Eg. (7.1) becomes
V(u) = U(u) + A A(u) $ B(s)V(s) (7.11)

from which there may be obtained a simple matric equation for the auxil-

dary unknown X = $ B(s)V(s) by premultiplying by B(u) and summing:

X = $ B(u)U(u) + A\RX (7.12)

This equation may immediately be solved for X, which msy in turn be sub-
stituted in Bq. (7.11) to obtain the solution for V(s). Upon colmpa:ing
the result with Eq. (7.2), it is seen that the resolvent for this degen-
erate case is given by |

H(u,s50) = Afu)(1 - A R)™L B(s) C o (13)

The structure of this explicit expression for the resolvent for

a degenerate kernel clarifies many of the properties of resolvents for
the genernl case. The properties stated in Egs. (7.4) - (7.7) may be
readlly verified for this resolvent. Of greater importance for the
sequel 1s the fact thet the resolvent contains as a common denominator
the determinant det (1 - A R). This scalar function of the paremeter

A determines the poles of the resolvent considered as a function of A.
The secular equation is

det (1 =AR) = 0 (7.14)

and its roots are those values of A for which the homogeneous equation,
Bg. (7.8), has nontrivial solutions. In fact, it may be seen from Mys.
(7.12) and (7.11) that the solutions to the homogeneous equation will be

| V(s) = A(s) X (7.15)

vhere X is any eigenvector of the obverse matrix, R.

The secular equation, Ea. (7.1l4), is a polynomial equation of
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degree r, so that there will be r characteristic values of A, counte
ing multiplicities. This assumes that the order, r, of the obverse

matrix is also its rank; if R 1s singular, there will be fewer roots,

but then a different factorization of the kermel could have been found

for which the obverse matrix would have had a lower order.

These results for the degencrate case will be generalized for
that of a general, nondegenerate kernel. The central result will be, as
may already be antlcipated, that the characteristic values of A will be
given by the roots, not of a polynomial, but of an infinite power series
in N, The explicit expression for the resolvent in the degenerate case
given in Eq. (7.13) provides the clue to the structure of the general

resolvent.
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8., STRUCTURE OF RESOLVENT

By. (7.13) is a prescription for calculating the resolvent of

a d.egenérate kernel. The poles of the resolvent, which correspond to

nontrivial solutions of the homogeneous equation, occur at the roots of
the determinant det(l - A R), a polynomial of degree r ih M. These
characteristic values of A\ are an intrinsie, though latent, property of
the kernel and the fact that there is a finite nunber, r, of such roots,
counting multiplicities, is the essential characteristic of a degenerate
kernel,

A nondegenerate kernel will inherently possess an infinite
Mer of characteristic values of the parameter A. No factorization
into matrices of finite order as iﬁ Ea. (7.9) will then be possible., It
is alweys possible, however, to approximate the kernel arbitrarily close-
ly in such factored form, provided matrices of infinite order are admit-
ted. This is so because this decomposition will then be nothing more
than an infinite sum of products of functions of each composite index
separately, which certainly can represent any sufficiently regular ker-
nel with any degree of accuracy.‘ The obverse matrix of a nondegenerate
kernel so expressed will be of infinite order, the determinant det(l'-kR)
will be not a polynomial but an infinite power series in A\, and the mm-
ber of characteristic roots will, consistently, be infinite, The nonde-

generate case can thus be considered a limiting case of that of a degen-

‘erate kernel, but with the transition of the order, r, to infinity.

Evidently, however, the calculation of the resclvent of a non-

degenerate kernel by Eq. (7.13) with the cbverse matrix, R, and the tvo
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factors, A(u) and B(s), of infinite order is not feasible. Nevertheless,
the fact that the resolvent could be so expressed, in a formal sense,

dees the clue to the solution of the problem for general kernels.

Por this possibillity of considering a nondegenerate kernel as a limiting

cagse of a degenerate one indicates that the structure of the resolvent
will be that of a resolvent for a degenerate kernel and, in fact, aw
property of a resolvent for a degenerate kernel which does not depend
explicitly on the order r or on its finiteness will be possesse@ by
the resolvent for the general kernel. Recognition of this fact leads to
the solution of the problem. '
Accordingly, in direct analogy with the degenera'i:e case', the
resolvent for a general kernel will be assigned the structure

H(u,s58) = Clu,850)/p(N) - (8.1)

The determinator, p(A), is a scalar function of only the parameter A and
is the analog of the determinant det(l - A R) of the degenerate case.
The characterizer, C(u,s;\), is a three-dyadic function of two composite
indices and of A; it corresponds to the matrix A(u)Q(A)B(s) of the
degenerate case, vhere Q(A) 1s the adjoint of the matrix 1 = AR,

Both the characterizer and the determinator are mﬂnm. Their
relation to the kernel is readily determined from the resolvent équation,
By. (7.3), by miltiplying by p(A). The resulting characterizer equation
is | |

C(u,S;X) = K(uys)p()‘) +N$ K(u,v)C(V,s;k) ‘ (8.2).

This is, of course, insufficient to determine both C(u,s;\) and p(A).
A further, though still partial, specification of the determinator may
be nede in analogy with the degenerate case by fixing the arbitrary
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multiplicative constants of C(u,s;A) and p(A) in accordance with
p(0) = 1 (8.3)
It follows from Eq. (7.5) that
C(u,s;0) = K(u,s) (8.4)

Further progress toward the determination of C(u,s;A) and p(\)
may be made by prescribing the structure of the determinator to be the
analog of that of the degenerate case; that is, p(\) istobe a polynomial
in A, but of infinite degree:

]
p(») = I p | (8.5)

Bg. (8.3) prescribes that P, = 1; all other coefficients remain unknown.
Similarly, the characterizer will be expanded as

Clu,s5h) = T C (u,s]\" (8.6)

Here, C o(u,s) = K(u,s) and the other three-dyadic coefficients are un~-
known. Upon substitution of these assumed expansions into the charac-
terizer equation, By, (8.2), there is obtained the recursive character=

izer equation

Cp(w,8) = K(u,s)p, +$ K(u,v)C, (v,8) (8.7)

Ba. (8.7) is a recursion relation for the characterizer coeffi-
cients, but it. requires a knowledge of the determinator c;»efficients, Py
for the successive calculation of the cn(u,s) » starting from the known
initial coefficients

Co(u,s) = K(u,s) p, = 1 (8.8)

There remains, then, to specify the determinator coefficients, whereupon
ail the characterizer coefficients will be obtainable in succession from
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the recursive characterizer equation, and from these the complete solu-
tion for the general kermel, But, at this point, an impasse appears to
have been reached since all information about the resolvent has already
been.ut.ilized in obtaining the characterizer equation and no informa-
tion at. all is avajlable for the specification of the determinator
coefficients.

This, however, 1s clearly as it should be, for two unknown -
quantities were introduced in Eq. (8.1) to replace the one unknown
H(u,8;\). 'I"he determinator coefficients, exclusive of p , are therefore,
in fact, entirely arbitrary. Any chosen set of coefficients én may be
used in Eg. (8.7) to obtain the corresponding set of charac-:terizer coef-
ficients Cn(u,s) and, from these, the resolvent H(u,s;A). The resultant
expression will, of course, be valid for only that range of the parame-
ter A for which both series of Eqs. (8.5) and (8.6) are convergent.

In view of the arbitrariness of the determinator coefficients,
it is tempting to simplify the expressions by selecting zero as the
value of all determinator coefficients, except p o* This eliminatés the
question of the convergence of the series for the determinator and sime
plifies the recursive characterizer equation to

0 (u,8) = $ K(u,v)C, ,(v,8) (8.9)

which, with C_(u,s) = K(u,s), readily yields each characterizer coeffi-
cient in succe;sdm. With this choice for the p n? the final expression
for the resolvent is

H(u,s;\) = ;530 KMl(u,s)xn . (8.10)

where the "powers" of the kernel are defined recursively by

.‘ ‘Kl(\l,l)‘ = K(u,s) Knﬂ(u,a) = $ K(u,v)K*(v,s) (8.11)
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This is certainly a proper solution to the resolvent equation.
It 1s, in fact, the Neumann series solution which could have been ob-
tained directly from the resolvent equation, Eq. (7.3), by iteration;
i.e., by introducing the entire right<hand side of this equation into
the summand appearing therein, and repeating the process indefinitely.
This Neumann solution has the drawback, however, that thg range of A\ for
vhich it converges is too small. The series of Bg. (8.10) actually
diverges for all values of A with absolute value greater than thet of
the characteristic value of smallest magnitude. As has been remarked,
the characteristic values of A and the associated solutions of the homo-
geneous equation are of the greatest interest, but the Neux;xann series
fails to converge as soon as the first characteristic value 1s attained.
This solution is thus entirely useless for the study of the sourceless
solutions.

This is the crux of the problem, Although the determinator
coefficients are arbitrary, for a given assigmment of values to the D,
the series for p(A) and for C(u,s;\) will converge only for A within
some finite circle of convergence and the resulting expression for the
resolvent will be w;alid only in some restricted range of the parameter

A. This situation clearly defeats the purpose of expressing the resol-

} vent in terms of a characterizer and determinator. What was intended

was that the poles of the resolvent, which correspond to the character-
istic values of A and the sourceless solutions, be obtainable as the
roots of the determinator. The secular equation would then be simply

p(r) = O (8.12)

with an infinite muber of roots corresponding precisely to the infinite
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number of characteristic values of A associated with a nondegenerate ker-
nel. Furthermore, the condition that Eq. (8.12) specify the characteris-

tic values of A was to lead directly to the actual nontrivial sourceless

solutions as well. Thus, if A solves Eq. (8.12), then from Eq. (8.2)

Clu,s50)) = A $ K(u,v)C(v,s5n) (8.13)
and a solution to the homogeneous equation, BEq. (7.8) s is
. V(u) = C(u,so;}\o)co (8.14)

vhere c, is an arbitrary, constant three-vector and 5o is any value
of the composite index s. This sourceless solution will be nontrivial,
provided merely that 5o and c, be not chosen so as to annihilate the
resulting V(u). ‘

To fulfill these desired conditions, a set of values for the
determinator coefficients must be so specified that, firstly, both p(\)
and C(u,s;A\) be entire functions of A, thereby insuring convergence for
all A and the validity of the expression for the resolvent over the full
frequency spectrum; secondly, that the secular equation, Eq. (8.12),
yield all characteristlic values and only the characteristic values of A;
and thirdly, that the eigensolutions C(u’so;)‘o)co be obtained as well.
Now in the degenerdte case, in which p(A) is det(1 - A R), these condi-
tions are satisfied. To achieve these results in the general case, the
determinator must be specified in the seme way as in the dégenerate' case ’
despite the infinite order of the obverse matrix. That is, the relation
which 1s to be specified so as to determine, in conjunction with Eg. (8.2)
the desired form of the determinator must be precisely that which obtains
in the degenerate case, independently of the order of the obverse m.atrix.‘

This relation must be investigated.
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9. TERMINATION CONDITION

By the foregoing reasoning, the problem has been reduced to

that of specifying a relation between the characterizer and the deter-

minator of the resolvent for a general kernel which will yield the
optimum set of coefficients for the expansion of the determinator. This
optimum condition will be such that the poles of the resolvent will be
the roots of the determinator, both the characterizer and determinator
being entire functions of the parameter A, The relation to be found
will complement that of Eq. (8.2) and thereby provide a sufﬁcient mm-
ber of conditions for the unique determination of both the characterizer
a.nd. the determinator,

In the degenerate case, the determinator and the characterizer

p(N) = det(l - AR) Clu,s;A) = A(u)Q(N)B(s) (9.1)

where Q(A) is the adjoint of the matrix (1 - A R):

QA) = (1 - R)'ldet(l - A R) (9.2)

Clearly, there is an intimate relation between p(A) and C(u,s;\), as a
result of which, effectively, both of these are entire functions and the
characteristic values are given by the roots of p(A), regardless of the
order of the obverse matrix, R. As expressed in Eq. (9.l), however,
both p(\) and C(u,s;\) depend on R and can be calculated explicitly only
if its order, r, 1s finite. In order to adapt the specification of Eq.
(9.1) to the case of a general kernel, it is necessary to express the

relétion between the characterizer and dejberminator in a form which is
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independent of the order, r, of the degeneracy. Such a relation will be
applicable to the case of an obverse matrix of infinite order as well as

to the degerierate case. The determinator and characterizer of a degen-

_erate kernel are entire functions because they are polynomials in A; in

the nondegenerate case their expansions in powers of A will not termi-
nate, but if the condition on the determinator is taken as the analog of
that which holds in the degenerate case no singularities will be intro=-
duced into either the characterizer or determinator to limit their radii
of convergence.

The relation sought is one between the scalar p(\) _and the ma-
tric function of two composite indices C(u,s;A). The composite indices
can be readily eliminated by summing over them; there will then remain
to extract a scalar from the residual matrix. A significant set of
scalars associated with a matrix, closely related to its eigenvalues but
more easily calculated, consists of the traces of the matrix. An nxn
matrix A 1s characterized by n <traces. The m-th order trace, ’l‘rmA,
is the sum of the principal minors of order m of the matrix. Its
significance lies in the fact that 'I‘rmA equals the sum of the products
of the eigenvalues taken m at a time. The trace of A, i.e., the sum
of its diagonal elements, Tr A, corresponds to 'I‘rlA; the determinant
det A coincides with T‘rnA. For convenience, the further definitions
vill be made that Tr A = 1 and that Tr A = O for any m which exceeds
the order n.

From the relation between the traces and eigenvalues of a ma~

trix, the following properties of the traces may readily be demonstrated.

Tr AB = Tr BA (9.3)
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Tr, cA = c"Tr A (9.4)

¢ -1 ‘ N
Tr, A = Tr A/ det A (9..*5)
Tr, (1+A) = kgo (:::) Tr, A : (9.6)

The commutation property of Bg. (9.3) holds even 1f A and B are not
individually square matrices, although they must be conformadble in both
orders. This property results in the invariance of the traces uné.er
similarity transformations. In BEq. (9.4), c 1is a scalar multiplier.

Virtually the only significant scalar which can be extracted
from C(u,s;A\) by linear operations is -

£(A) = $ Tr C(s,s;0) (9.7)
It may be expected that this scalar function of A is related to p(\).
This relation constitutes the Termination Theorem, which can now be
proved, grented the preliminary lemma that the-operators $ and Tr
commute, There follows
£(A) = $ Tr A(s)Q(A)B(s) = $ Tr Q(A)B(s)A(s)
= Tr $ Q(A\)B(s)A(s) = Tr Q(A\) R

vhere the conmtation property of Bg. (9.3) and the linearity of § have
been used. Let '

G(\) = -AR , ' (9.8)

Hence, by Bas. (9.4), (9.2), and (9.1),
CoAZ(A) = Tr Qe = Tr (140)7Np6 = por (1070)7T

'Using Bq. (9.5) and noting that det(1+G™>) = det[6™1(1+G)]

-dp'l;(li'o)/deta = p/ det @,
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-1 -1 -1
«A2(\) = p'I'rr_l(l-l-G )/det(14G™) = dets !l‘rr_l(l-o-G )
From Bqs. (9.6) and (9.5), )
. re
- A 2(A) = detG I (r-k) Tr, G
r-l
= detG T (r-k) Tr. . © / detG
r
= m§l m 'l‘rm G
which, from Bas. (9.8) and (9.4), is equivalent to
po m m=1
£(A) = - & (-1)" Tr, Rm A
which may be recognized to dbe
' d L m n
£(\) = oy UEO (-1) 'l‘rmRA.
" But, from Fa. (9.6),
' ' r m m
p(A) = det(l -AR) = T (-1)"Tr RN (9.9)
Hence f(A) = - dp/a\ and the relation sought is
- %{' = $ Tr C(s,s;5)) (9.10)

vhich depends explicitly on neither R 'nor its order, r.

Conversely, it may be shown that the power series for both the

determinator and characterizer will indeed terminate for a degenerate

" kernel if the condition of Eq. (9.10) is imposed in addition to BEg.

(8.2). For in the degenerate case, By. (8.2) alone ylelds as the char-
acterizer, for any p(A\),

Clu,s50) = A(u)(L - AR) Sp(A)B(s) . (eu11)

so that $ Tr C(s,850) = B(A) Tr (1 - AR)™'R, from which

-(1/p)ap/an) = - (3/)logp = Tr(1 - AR)R
= - Tr (4/dr)log (1 - AR)
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or, in view of the commtativity of Tr and d/d\ and of the initial com-
ditions on p(A\),

log p(A\) = Tr log (1 - AR) (9.12)

-But since Tr log A = log det A, as follows from the relation between

the trace and eigenvalues of the matrix log A, Eq. (9.12) implies

P(A) = det (1 - AR) (9.13)

80 that the power series for p(A) will terminate at A'; in fact,
r m m .
p(A) = I (-1)" Tr R\ (9.14)
m=0 m _
21,22
The Cayley~Hamilton theorem may be written

r
r-m m
I (1  RET - o (9.15)

or, by comparing the coefficients in Egs. (9.1%) and (9.15),

r
mEo Prom B =0

By iterating in BEq. (8.7), there is obtained
r
Clus) = T K™Huwe) 3, (9.16)
But, from BEq. (8.11),
K™ (u,8) = A(u) R® B(s) (9.17)
80 that

cr(u,s) = A(u) m-;:-.o Prop " B(s) = 0O (9.18)

Since p ., = O and C.(u,8) = 0, Eq. (8.7) implies that all higher-
order coefficients of C(u,s;A) vanish. Hence both the determinator and

characterizer expensions for a degenerate kernel will terminate as a
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result of the application of Egs. (8.2) and (9.10).

If the termination condition is applied to the nondegenerate
case, the series will not actually terminate, but its effect, which is
to cancel the poles of (1 - AR)™T with the zeros of p(A) in By. (9.11)
80 as tc; render C(u,s;A) an entire function, will persist even as the
order of the degeneracy, r, is allowed to become infinite. Thus, the
termination condition, Eq. (9.10), realizes the proper pole cancella- -

tion property of the optimum determinator,
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10, COMPLETE SOLUTION
The characterizer equation end the termination conditionm,
togethef with the initial conditions, provide the complete solution to
the problem posed herein. These equations are
C(u,s;A) = K(u,s)p(r) + A $ K(u,v)C(v,s;\) (10.1)
- % = $ Tr C(s,s;\) : (10.2)

p(0) = 1 C(u,s;0) = K(u,s) - (10.3)

Upon solving these for the characterizer C(u,s;A) and determinator p(A\),
O . the resolvent H(u,s;A\) is obtained as their ratio, BEq. (8.1). This

| immedistely ylelds the field transforms V(s) and I(s) from Egs. (7.2)

and (6.4) and these may be inverted to obtain the ectual fields in co-
ordinate space.

. Perhaps of greater importance than the fields for the study of
a given linear medium is the fact that the eigenfrequencies are obtein-
able from the secuigr equation

p(\) = O (10.L)

This equation, the cexr!_;ra.‘l. result of the theory, h_as the significance of

a dispersion relation for a propagation problem, or of a resoneance condi-

A e

tion for a cavity, or of any equivalent relation smong the frequency of a
wave, its wevelength and other characteristics, end the dimensions and

electrical properties of the medium. As such, the seculer equation

affords a powerful characterization of the electromagnetic properties of
the medium.

e SRR S ¢ TS 1,0 7 5
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In conjunction with the solution to the secular equation,
there is obtained in this formulation the associated characterizer,

vhich corresponds essentially to the residue of the resolvent at its .

.pole. This characterizer yields the solutions to the homogeneous equa-

tion, ﬁ,. (7.8), as
V(s) = C(s,sc’;ho-)co : (10.5)

vhere A is & root of the secular equation, s, is eny value of the com-
posite index, and ¢ o is an arbitrary constant three-vector. The constant
vector ¢ o’ iogether with the selected value of S pla&s the role of the
arbitrary amplitude coefficient for the normal moé.e. . _.

The actual solution of Egs. (10.1) and (10.2) may proceed by
recursion. The determinator and characterizer are expanded in power -
series in A, as in Egs, (8.5) end (8.6), which, upon substitution into

Bgs. (10.1) and (10.2) and comparison of coefficients, yleld

cn(u,s) = K(u,s)pn +$ K(u,v)Cn_l(v,s) (10.6)
-np, = $Tr cn-l(s’s) (20.7)
p, = 1 C‘o(u,s) = K(u,s) (10.8)

These equetions suffice to yleld all the unknown coefficients of both
p(A\) and C(u,s;\) in succession. Starting with Eq. (10.8), p, 1s ob-
tainsble from By. (10.7), whereupon C,(u,s) can be calculated from Bq.
(10'.6) and this, in twn, will yield p, through Hq. (10.7); the process
may be repeated indefinitely to obtain, in principle, explicit expan-
sions of fhe determingtor and the characterizer, The rapidity of con-

vergence of these expansions depends, of course, on the originsl choice
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of expansion functions, c(r,s), for the transformation. The solution of
the problem would then proceed with the solution and study of the secue
lar equation, Eq. (10.4).

_ There can srise a situation in which the procedure just de-
scribed may be thwarted at its start. This is the case if K(u,s) is in-
finite or undefined for u = s, whereupon the prescription for calculate
ing p, from Bg. (10.7) 1s ineffectual. This situation demands a modi-
fication of the recursion relastions which will sidestep the difficulty.

That such a modification is possible is the result of the
residual ambiguity of the characterizer and determinator. 'I'h_e essential
quantity 1s the resolvent and this has been found as thg r;atio H(u,s;\) =
C(u,s;7)/p(N\). Both numerator and denominator of this ratio may be
maltiplied by some scalar function g(A) to yield the equivalent ratio

H(u,s58) = D(u,s;n)/a(r) (10.9)
vhere

a(rx) = p(r)a(r) D(u,s;A) = C(u,s;A)a(r) (20.10)

To preserve the initial value of the determinator, g(0) = 1 may be speci--

fied. The modified characterizer equation is then essentially the same,
D(u,s;A) = K(u,s)a(r) + A $ K(u,v)D(v,s;)\) (10.11)
but the termination condition is altered to

- &B;: = $ Tr D(s,s;A) - t(A)a(\) (10.12)

vhere
t(A) = (1/g)(dg/ar) (10.13)
Now if g(\) 1s chosen such that

6A) = t = $ Tr K(s,5) (20.14)
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then the modified termination condition will be
- %;\9‘ = $ Tr [D(s,8;)) = K(s,s)a(n)] (10.15)

If pover series expensions of D(u,s;\) and g(A) are made, the modified

recursive characterizer and termination equations become

Dn(u,s) = K(u.,s)q~n +$ K(u,v)Dn_l(v,s) (10.18)
-ng = $ Tr [Dn_l(s,s) - K(s,s‘)qn_l] (10.17)
q, = 1 Do(u,s) = K(u,s) (10.18)

The result is that ql = O and manipulation with the possitly nonex-
istent K(s,s) has been avoided. From Eqs. (10.13) and (10.1L4) there
follows that

a(n) = €™ p(a) (20.19)

so that no new zeros have been introduced into the determinator, both
q(M\) and D(u,s;\) ere entire functions, and the modified secular equation

a(A) = 0 (10.20)

yields the same results as does Egq. (10.4).

A more serious crisis can arise in the previously described
method of extraction of normal modes, Eq., (10.5). The trivial zero vec-
tor may be obtained if c o and s o &xe injudiciously chosen, but, normail\v
such values of s o are the exceptional, easily avoided ones. In some
cases, however, the process may fail entirely far all values of s o and
¢, ;because c(u,s;ko)‘ may vanish identicelly. This situation mey arise
if A 18 a miltiple root of the secular equation. The procedure for ex-
tragting the normal modes then pecomes considerably more complicated.,
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Since no information was lost in translating the problem from Maxwell's
equations to the present formulation, it may yet be expected that some

further set of operations may be applied to the characterizer to extri-

cateAthe ‘complete set of normal modes from the equations even in case

A.o is a. repeated root of p(\). The appropriate operations for this
purpose will now be expounded.

. i




Rode o

1l. NORMAL MODES

The present reformulation of Maxwell's equations incorporates
all th.e' results obtainable for any linear medium in the corresponding
resolvent H(u,s;A). The physical properties of the medium are reﬂeéted
in the analytic properties of this function. In particular, the reso-
nance condit:lc.)n. or dispersion relation characterizing the medium is a
mathanaticai statement which locates the poles of the resolvent, while -
its i-esidues describe the normal modes of the system.

The basis for obtaining the normel modes is the i)rinciple that
if there be extracted fram the resolvent any matrix T(u,s;\) with the
property that

T(uss.:)‘o) - xo $ K(u,V)T(V,s;Ko) - (11.1)

vhere A, is a root of the secular equation, then this matrix will gener-
ate solutions to the homogeneous equation, Eq. (7.8), as follows.

V(u) = $ T(u,‘s;).o)c(s) (11.2)

I(u) = $ Y(u,s)V(s) (11.3)
Here, c(s) is an arbitrary three-vector function of one composite index.
For this sourceless solution to be nontriviel, it is required merely
that the vectar c(s) be not one that is annihilated in summing with
!L‘(u,s;xo). This requirement is normelly so week thst the summation may
be avoided entirely by choosing a unit function for the arbitrary vector:

e(s) = cl(s,8,), where 8, 1s any value of the composite index and c
any constant three-vector, each selected so that the resulting V(u) does

not 'iupiah. This procedure offers no difficulty unless '.l'(u,s;xo) is
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identically zero,

As indicated previously, the characterizer C(u,s;A) is such a
matrix and it does yleld a normal mode for each root of the determinstor
in this manner. The process fails, however, if C(u,s;\) vanishes iden-
tically .at A= ).o. This can occur if %'o is a multiple root of the
secular equation. Another matrix T(u,s;A) must then be found which
satisfies By, (11.1) for this A = N, and vhich does not vanish. Clearly,
this corresponds to finding the residue of the resolvent at a pole of
higher order. The procedure for finding the normal modes for multiple
eigenvalues is, in fact, analogous to that of extracting such a residue
and is justified by the following Successor Theorem. -

Let a differential operator Dn(x) be first defined by
n

r At
n! »n

D (Mf(A) = (11.%)

It is readily verified that this operator's effect on a producf is ex-
pressed by
n
D () [£(\)e(r)] = _E D (\£(A) D ()a(r) (11.5)
Furthermore, by virtue of the property of the resolvent given in Eq.

(7.6), and defining the "powers" of the resolvent just as those of the

kernel were defined in Eq. (8.11), it is found that

D (MH(u,s50) = A" HH(u,550) (11.6)
Let now the successors S‘n(u,s;h) and the terminators gn(x) be defined
by :
s wen) = D(NCEN)  g(A) = DR (1L.7)
The relastion between these quentities is revesled by applying the D n().)

operator to the defining equation
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C(u,s;A) = H(u,s;N\)p(A\) (11.8)
to obtain, by use of Bgs. (11.5) and (11.6),
B nem I_In+l-m ‘ .
Sy(w,858) = T A (u,850) g (M) (11.9)
Comparing this expression with the same one written for Sn_l(u,s;x) s
there is immediately obtained the recursion relation
S,(u,858) = A $ H(u,v;A)S, o (v,850) + H(u,s5M)g (M) (11.10)
The effect of the kernel K(u,s) operating on a successor is obtainable
from this recursion relation by applylng the resolvent equation, Eq.
(7.3), directly. The result is | '
s (u,550) = N § K(u,v)S (v,s58) + R (u,85)) (11.11)
Rn(u,s;k) = A$ K(u,v)Sn_l(v,s;k) + K(u,s)gn(x) (11.12)

Thus, the successor Sn(u,s;k) will satisfy Bg. (11.1), prov:lded that
R (u,85) ) venishes. '

To apply this Successor Theorem to the problem of calculating
the normal modes of a system, consider a case of a determinator p(A)
which has a zero of multiplicity z at A = A ; that is, p(\) has
- x/xo)z as a factor. It may then be that C(u,s;\) contains
Q- x/xo)e as & factor, with 0<e <z, If e #0, C(y,s5\,) vanishes
and no normal modes are cbtainable from the characterizer. But the ‘
appropriate successor may then be usedvin lieu of the characterizer to

genérate a sourceless solution. For, in this case, gn(ho) = 0 for

0 < n<zwhile g (7)) #0end S (u,850 ) = 0 for 0 < n < e vhile

Se(“,’s‘."o)" 0. This implies that ,Re(u,sgko') = 0, so that se(u,s;xo)

sat:l.sfies Eq. (11.1) and yields a solution to the homogeneous equation.
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While this disposes of the problem of obtaining a normal mode
at any eigenfrequency, it leaves the question of whether any other nor-
mel modes, independent of the one obtained as above, may exist for the
same frequency. The rather complex answer to this question may best be
deriveé. from a detailed study of the structure of the resolvent for a
degenerate kernel, which will now be outlined.

In the degenerate case, all sourceless solutions are of the
form

V(s) = A(s) X (L-AR) X = 0 (11.13)

Hence, the question reduces to that of determiniﬁg the nmbez; of indepen=-
dent eigenvectors X of the obverse matrix R for A = xo. This question,
together with the main problem of how to extract these normal modes from
the kernel, may be resolved by examining the Jordan canonical form of

the obverse .21’ 22

If S is the similarity transformation matrix which
reduces the obverse to its canonical form, it becomes clear fronl an
examination of the detailed structure of the matrices involved that the
normal modes sought are linear combinations of certain specific columms
of the matrix A(s)S, the eigencolurms. While this matrix is beyond cal-
culation, the Mteﬁal structure of the successors is such that they too
are formed from lineer combinations of certain columns of this matrix.
The succc-_:séors for a degenerste kernel are, from Eq. (9.1), Sn(u,s;x)

= A(u) nn(x)q'(x) B(s) and upon examining the canonical form of Dn(x)q(x),
1t is found in general that, first, for e < n < z, ea.chlsn(u,,s;)\o.) is
formed from linesr combinstions of columns of A(u)S which include some
eigencolums; second, 'Se(u,s;xo) is composed of only eigencolums but

the other successors include extraneous columns; third, eigencolumns not
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included améng the first few nonvanishing successors will be found among
the remaining successors; finally, all the eigencolumns are represented
among the complete set of successors Sn(u’S;}‘o) for e<n< z.

Being thus assured that 211 the independent normal modes are
obtain;'ble from linear combinations of the several successors, there
remains only to select the appropriate linear combinations to extract
only the eigencolums, filtering out the extraneous columns, and yet
obteining ell the independent modes. The Successor Theorem shows how
to accomplish this.

First, as alreedy demonstrated, at lcast one normal mode may
be obtained frem Se(u,s;ho) as Vl(u) = $ Se(u,s;‘)\.o)cl(‘s).. If this suc-
cessor incorporates more than one eigencolumm, then these other modes
will be obtainable as well by simply choosing other erbitrary vectors
cm( s) to form new, independent linear combinations of the eigencolumns
in Se(u,s;xo) in the same way.

' Next, once all the independent modes within Se(u,s;xo) have
been exhausted, the eigencolumns in 5, +l(u,s ;A.o) nay be weeded out in a
similer menner, except that the selection of arbitrary vectors cm( s)
must be severely restricted to avoid linear combinations in which the
extreneous colums appeer. From Egs. (11.11) and (11.12), it is clearly
sufficient that these cm(s) come from just that set of vectors which was
excluded in the previous step; thet is, these new vectors must be selectw
ed from among all those which are annihilated by Se(u,s;ho) , for then

'$ Re+l(u’5;)‘o)cm(s) vanishes and a new set of normel modes arises from

‘ $ Se+l(u,s;h°)cm(s). More modes, in fact all of them, will be similarly

obtainsble from the other successors Sn(u,s;).o) by sumdng with vectors




cm(s) vhich ere amihilated by Sn_l(u,s;xo) and not by Sn(u,s;).o) but
vhich are otherwise arbitrary.. The process mist terminate no later thenm
vhen Sz_l(u,s;x o) has been forced to yield its eigencolumns,

| Much of the vagueness associatied with this process may be
elimin&.ed through a system of tabulation which traces the progress
towerds the extraction of all the normal modes from the successors, p:o--
vides upper bounds on the number of modes which each successor may be
expected to yleld, and signals the end of the process as soon as all the
modes have been obtained, thereby averting a fruitless search for non-
existent modes. The tabulation stems from a classification .6f all pos-
sible structures which any matrix may have in its Jordan Eanon;cal form,
With the eigenvalue A‘o’ of miltiplicity z, of the obverse matrix R there
is associated & classifier, h, consisting of z posit:l.vé integers, hm’
with the properties

mgl h o= z ' (11.1%)

h2ha (11.15)
There are as many independent eigenvectors of R, or eigencolumns of
A(u)s, or normal modes, as there are nonzero elements of h, To a mode
obtained from Sn(u,s;xo) there corresponds a nonzero element of h of
value z-n. These conditions jointly delimit the mumber .of steph re=
quired in the process of extraction of the solutions to the hMms
equation from the successors. '

With the observation that the terminators and succéssors can

" be calculated direct]y'from the determinator and cheracterizer coeffi-

cients, found from Egs. (10.6)-(10.8), as
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gn().) ... m‘én(:) pmxm Sn(u,s;x) - n:z::n(:) C»m(u,a)xm (11.18)

d
o
3
¥
£
kY
]

g the normal modes of a given linear medium,

the foregoing is seen to constitute a camplete progrem for obtaining all

S
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12, GENERAL SOLUTIONS

The theory presented herein not only reformulates the elecw-

" tromagnetics problem of a linear medium in terms of a new equation to

replace those of Mexwell but prescribes a step-by-step procedure for
salving this resolvent equation and for extracting all the pertinent
information a:baut th; system as well, The information obtainsble from
this formilation excludes none that could be obtained from Maxwell's
equations, but it emphasizes the dispersion, resonance, or other exist-
ence condition characteristic of the medium and the complete' set of nore
mel modes associated with it, rather then the actual fields produced by
a.n& distribution of sources and the power and energy carried by the
fields. 'The former are actuslly the relations of greatest interest and
significance in most situations.

The recursive solution for these quantities embodied in Egs.
(10.6)-(10.8) demonstrates the possi’bility‘ of obtaining a complete,
exact solution to the resolvent aquation. This particular method of
solution may, however, be among the least efficient of the many which
ere availeble, The resolvent equation

H(u,s;A) = K(u,s) + A $ K(u,v)H(v,s;\) - (12.1)

is the result of central importance in the reformulation and should be
considered on its own merits, without any particular solution procedure
‘eppended to 1t. A host of analytical tools may be applied for its solu-

' tion, for which purpose a compilation of the equation's main properties

and a few spproaches to its analysis should be useful.
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The Neumann series solution to Eg. (12.1), obtained directly
by iteration, has been given in Eq. (8.10). As alreedy noted, this ex=
pansion is convergent only for small A and camnot be used to obtain the
normal modes. It should be useful for high-frequency approximations.
Mheﬁore, various analytic continuation 't'.echn:!.queosl2 may be applied
to this series to extend its validity to the entire frequency spectrum.
The Fredholm solution, Egs. (10.1)-(10.3), hes been designed at the cute-
set for validity at all frequencies, both the characterizer and deter-
minator being entire functions. In this formulation, the existence
conditions are expressed by the vanishing of the determinatqf.

For speclal forms of the kernel, a complete, exéct, closed
solution 1s immediately obtainable. One such type of kernmel is the .
degenerate one, vhich was treated at length in the foregoing. Its re-
solvent is given exactly by Eq. (7.13) and the existence conditions are
Just those which an eligenvalue of the obverse matrix must satisfy,
Another type of solvable kernel, which may be termed "ideal," is ome of
the form

K(u,s) = N(s) 1(u,s) (12.2)

The unit function permits a direct solution to the resolvent equation.
The resolvent of the ldeal kernel is found to be

H(z,s50) = (1 - AN(s)1™ B(s) 1(u,s) o (123)
and the existence condition is

det [1 - A\N(s)] = © ' (12.%)

It should be noted that the composite index appears here explicitly in
the secular equation. ILinear combinations of degenerate and ideal ker-
nels also lead to closed forms of resolvents, with the aid of some other
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properties of resolvents listed below.

The differential equation satisfied by the resolvent 1s

Q-H-(%iiﬂ-'l = § H(u,v;\)H(v,s;\) (lé-5)

.With tﬁe initial condition
B(u,s;0) K(u,s) (12.6)
this may be considered an alternate definition of the resolvent. More
basic stil]_. is the functional equation for the resolvent,
H(u,s57) = B(u,558) = (M) $ H(u,v;N\)H(v,s;8) (22.7)

vhich identifies the class of functions to which all resolvents belong.
General properties of resolvents include that of commtation:
$ H(u,v;\)H(v,s58) = $ H(u,v;8)H(v,s;\) (12.8)

In particular, the resolvent commtes with the kernel. The resolvent of

‘& kernel which is proportional to one whose resolvent is known is found

as
K(u,8) = aK_(u,s) H(u,s;A) = a E (u,s;8\) (12..9)
If two kernels are orthogonal; thet is, if
$ K (u,v)Ky(v,8) = $ Ky(u,v)K (v,s) = © (12.10)
then the resolvent of the sum is the sum of the resolvents:
K(u,8) = K (u,8)+K,(u,8)  H(u,8;M) = B, (u,85))+H,(u,851) (12:11)

The resolvent of a kernel which is the sum of a degenerate one and one

whose resolvent is known is expressible in closed form, as follows. If

K(u,s) = A(2)B(s) + K (u,8) (12.12)
then let _ . )
| A (wA) = Au) + A H (u,85M)A(s) (12.13)
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B (s5A) = B(s) + A $ B(wE_(u,85) (12.14)
R,(A) = $B(a)A (s;0) = $ B (s;))A(s) (12.15)
and the resolvent for this partially degenerate kernel is
H(u,88) = H(5,850) + A (wA)[1-AR (A1 7B _(s51) (12.16)

Finelly, it is noteworthy that the recursion relations of Egs.
(10.6)=(10.8), which produce the power series expansions for the charéc-
terizer and determinator of the Fredholm solution, are explicitly solv=-
able, ylelding expressions for each of the determinator and'characterizer
coefficients which may be evaluated directly from the kernel, The kernel
must £irst be processed to yleld the terminants,

t, = (-1/n) $ T K'(s,s) (22.17)

In terms of these, the explicit expressions for the determinstor and

characterizer coefficients are

n en -
pn - Em_]’.:.[l %;:!-— (12¢18)
n 1 h
c,(u,8) = Z K (w8)p, (12.19)

In Bq. (12.18), the summation is over all terms of the indicated type

which may be formed from n positive integers e

, Such that 0<e <n

and
n

Eqs. (12.17) and (12.18) epitomize the entire processing required to

'extract the existence condition from the kermel. The recursion rela-

‘ tions may, however, be more convenient than these cumbersome explicit

expressions.

Eilmey = 0 ' (12.20)
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The foregoing brief summary of the analytic properties of
resolvents is intended as a guide to the most efficient way of attack=
ing the resolvent equation for any particular problem. It may be seen
that the ease with which the equation may be manipulated and solved
depend..s mainly on the farm of the kermel. A crucial point to be noted
is that the form of the kernel is in great measure dicitated by the orig-.
inal choice of the basis of repregentation for the solution. Although
the choice of the complete sets is in principle arbitrary, a judicilous
:I.xﬁ.tial chéice will clearly simplify all further calculations.




15. GENERAL TECHNIQUES

The theory developed herein msy be extended through general
and spécial techniques epplicable in various situations. Specialization

may be desirasble in certain cases with simplifying features for which

the use of the formideble machinery set up here would be an extravagance.

Generalizations, on the other hand, can lead to the relaxation of some
of the restrictions under which the theory is valid.

One restriction which may easily be dropped is that which re-
quires the constitulive tensors to be 1pdependent of frequeney. This
condition was imposed for convenience of interpretation of the secular
eqﬁation as a dispersion relation or resonance condition. Many of the
eq_uat:lons obtained, particula.rly the termination condition, are not
valid if the kernel is a function of the parameter A, which is the case
when the constitutive tensors depend on the exclitation frequency.

To adapt the theory for the case of frequency-dependent con-
stitutive parameters requires only the redefinition of the parameter A
and of the vkernel K(u,s). Abandoning the original relation between Y
and the frequency, expressed in Eg. (6.5), the paremeter A is now to be
considered an arbitrary auxilisry veriasble unrelated to any plnreical
quantity. The kernel K(u,s) of Eq. (6.6) is now more conveniently re-
defined as simply

g K(u,8) = $ 2(u,v)¥(v,s) C (13.)
The entire subsequent theory remains valid, with only the followins'
slight modification. With this new definition of the kernel, Bq. (6.8)
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represents a problem somewhat more genersal than required, but one which
reduces to that of Maxwell's equations far A = 1, This last specifica-

tion is therefore to be introduced into all the equations 80 as to »ma,ke

them valid for the electromagnetics problem in question.. In particular,

.the ne';r secular equation is
p(l1) = © ' ' (13.2)

which, despite the appearance of overdetermination, simply fixes the
wave number k in rélation to the dimensions and other parameters of the
system. Fé. (13.2) can hence be interpreted in the same way‘as was Eq.
(10.4). Complications may arise, however, since the expansioﬁs of the
determinator and cherascterizer can no longer be claimed to converge over
the entire frequency spectrum, for the frequency dependence of the .con-
stitutive parameters may introduce singularities into these functions.
Analytic continuation techniques may then be required to suit the partic-
uler frequency dependence of the medium. A |

A more sweeping aslteration of the theory is called for in case
the kernel is singular. A weak type of singularity has already been
disposed of through a modification of the termination condition &s in
Eg. (10.15). For étronger singularities, however, in which higher powers
of the kernel are also singular, this modification is ineffectual. This
is the case, for example, with the ideal kernel of Bq. (12.2). What is
required in such cases is a redefinition of the determinator, as follows.

H(u,s5A) = Clu,8350)/p(s:A) (13.3)

_ The ideal determinator, p(s;A\), is now a function of the composite index

s as well as of the parameter A\, The termination condition must corres-
pondingly be modified to
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: - B(eh) L g 1 o(u,65n) (13.4)

where, as indicated, the generalized summation is to be performed only
over the composite index u. A similar modification in summation is to
be introduced into the appropriste equations of the rest of the theory,
which thereupon remains valid even in such singular cases.

The new secular equation for such cases is

p(s;A) = 0 ' (13.5)

Its interpretation is no more difficult than thai_; of the previous form.
Here, the existence condition relates the wave numberv k implicit in A to
not only the dimensions of the systeﬁ but fo the trensform index s as
well, This index will then readily be assignéd a physlcal signiﬁcahce, ‘
such as that of a propagation vector in a dispersion relatidn.
Specialization of the' theory is called for to teke advantage
of such simplifying features of a problem as its symmetry properties.
For exsmple, a typical propagation problem mey involve axial symmetry,
vhich invites the introduction of a propagation factor of the form '

e-J‘bz in cylindrical coordinates. This simplifies the subsequent cal-

.culations since this will be the dominant, if not the only, axial vari-

ation of the fields. The resulting simplification can be introduced at
the outset by modifying the curl operator of Eq. (3.2) to the extent of

replacing 3/3z by 3/3z - Jb and then eliding the propagation factor.

.Similar modifications may be made in case of circular or other symmetry.

" More generally, the presence of symmetry in a problem cen lead,
with the appropriate choice of the basis of representation, to a reduction
in'the dimensionality of the resolvent equation, If the composite index
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cen be partitioned as s = (sl,sz) , 80 that the kernel is ideal with
respect to one part of the index, then the multiple summations can be

reduced in mmber. Thus, if K(u,s) = K(s ;ue,sa)l(ul,sll), then

| H(u,s;\) = H(513u2’52;)‘)1(u1’31)" with the dimensionally reduced

resolvént equation

H(s,5u5,8,55M) = K(s,5u5,8,) + A $,,2 K(sy5u5,v,)H(8,5v,,8550)  (13.6)

in which the status of 8y is that of a pearameter, rather themn of a dw
index.

Another feature of some media which allows the calculations to
be reduced is the presence of conducting regions.or boundaries. 'Ihése
can be treated formally by introducing infinite values of the conductiv-
ity into the permittivity dyadic for those values of the position vector
which correspond to the perfectly conducting regions of the space. In
the case of a closed system bounded by conducting walls, the result is
that the integrations involved in the transformations become limited to
the interior region of the system.

If approximate solutions suffice for the applicetion at hand,
many simplifying techniques are available. A general kernel could be
approximated by one which is degenerate, whereupon an exact, closed-
form solution for the resolvent for the approximete kermel is obtainable.
Another situation in which the full mechinery of the theory is needlessly

cumbersome if approximate solutions are adequate i1s one which represents

.a slight perturbation of a medium for which the kernel is degenerate.

The kernel will then be expressible as in Eq. (12.12), 4n which Ko(u,s)
is, in some appropriaste sense, small. The Neumann series, Eq. (8.10),

1s then a rapidly convergent expression for the resolvent Ho(u,s;h) for
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the perturbing kernel Ko(u,s). The solution given in Eq. (12.16) can
then be used, with Ho(u,s;).) known st least approximately. Still
another type of ready-made approximation is available in case the kernel
is sharply peaked near u = s, though perhaps not actually of the ideal
type. The approximate resolvent is then easily seen to be

Hu,852) = [1 - A3 K(u,v)1"K(y,s) (13.7)

This last approach can be the basis for a method of "moments" for approx-
imating the resolvent, in which the resolvent is expanded in a power
series about the value of the composite index at which the kernel is
peaked and a set of simultaneous matric equations is solved for the
resolvent, |

An extensive generalization of the theory may be undertaken
with the goal of 1lifting the restriction to time~invariant media. While
slow time variations of the constitutive parameters present no diffi-
culties in yielding to analysis as modulated waves, rates of variation
comparable to those of the fields would require the abandorment of the
original steady state, harmonic analysis. The theory could be reformu-
lated in terms of a maxl operator vhich incorporates the partial derive
atives with respecf to time. The only remasining restriction upon the
applicability of the theory would then be simply to medis which are

linear.
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14,  ILLUSTRATION

As an illustration of the applicability and feasibility of the
method .of analysis presented hgrein, there will now be obtained there-
with the solution to a perticuler class of problems in electromagnetic
theory. Although this example is computationally quite trivial and is
certainly not intractable to standard methods of analysis, it does aid
in concretizing the rather abstract theory and possesses sufficient
generality to be of interest. A specific example of this clgss of prob-
lems will also be examined in detéil in order to dsplay the nature of
the calculations involved in the matrix formulation which underlies the
theory.

The system to be analyzed is that of an infinite, homogeneous,
linear medium. Such a2 medium is cheracterized by permittivity and per-
meability tensors which are independent of position, though otherwise
arbitrary:

e(r) = ¢ wr) = u (14.1)

The complete solution, as embodied in the resolvent for this system,
will be obtained end, in particular, the dispersion relation for the
medium. The theory mey be applied as follows.

As 'i‘.here is no characteristic physical dimension of the system
and since, moreover, the constitutive tensors may be functions of fre-
quency, the kernel as defined in Eq. (13.1) will be used and A will be
set equal to unity in the final result. For lack of any reason to com-

plicate the calculations, the transformer ¢(r,s) wvhich forms the basis
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of representation will be assumed to0 be a scaiir. The jmmittance ker-
nels are then given by
z(u,8) = $ a(u,r)(ke) eurl o(r,s) (14.2)
Y(u,8) = $ d(u,r)(kp) teurl c(r,s) (1k.3)

as is clear from en inspection of Egs. (6.2), (k.x4), (3.7), (3.4), end
(3.5). As a result of the constancy of the constitutive tensors and the
scalar character of d(u,r), these may be rewritten as

2(u,5) = (k)™ $ d(u,r) curl c(r,s) (1k.)

Y(u,s) = (kp,)-l $ d(u,r) curl c(r,s) (1k.5)

In view of the orthonormality relation of Eq. (4.7), it is clearly ad-
vantageous to select c(r,s) so that the curl operation leaves it intact.
If rectangular coordinates are selected, this is easily accanplished',
for then the operstor of Eg. (3.1) will clearly leave an emtid
function unchanged in form. Hence '

e(r,s) = 978 | (ih.s)

is selected, the composite index s being considered a vector. This
smounts to nothing more than choosing a Fourier transform to effect the

solution. The result of operating on c(r,s) with the curl operator is

expressed by S
curl e(r,8) = clr,8)(-34) B T
as follows from Eqs. (3.1) and (5.7). Hence, ,
$ a(u,r) curl c(r,s) = 1(u,s)(-3f) | (14.8)
ond the immittance kernels are ‘ \ “
2(u,8) = (-3/K)e” 4 1(u,8) (14.9)
Yu,8) = (=304 2ue) (24.10)
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The kernel is therefore simply
K(u,s) = (=1/k%)e " 424 1(u,s) (14.11)

This kernel is of the ideal type, as in Eq. (12.2), with N(s)
= (-l/ka)‘e'lﬂu'l;(. The resolvent for such kernels i1s given in Eg. (12.3).
In this case, letting
D(s) = e-lfu-lﬂ (14.12)
the resolvent is
Bu,s50) = [1 + (Wx2)D(s)172(-1/%x%)D(s) 1(u,s)
or, since A = 1,
H(u,s;1) = - (k> + D(s)I™D(s) L(u,s) - (14.13)
and the problem is solved.
The dispersion relation for this medium is given by Bq. (12.k),
which may be written in this case

det (k2 + D(s)] = © (1k.14)

Alternatively, the ideal determinator p(s;A) may be cbtained through the
recursion relations as an expansion in powers of A, which is unity.

What is obtained then is the same as the expansion of By. (14.1%) by use
of Bas. (9.6) and (9.4). The result is

6

k- + 'l‘rlD(s) kl‘ + T1'2D(s) X2 + 1‘1'3D(s) = 0

or, since 'I'rBD(s) = det D(s) = 0 as a result of the fact that det § = O,

L

k* + Tr D(s) k2 + r,D(s) = O (14.15)

This is the dispersion relation for any infinite homogeneous medium. A
From Eq. '(lh.s), s 1s clearly the propsgation vector and the transforma-
tion is merely an expansion in plane waves. The normal modes are given

by the condition that V(s) be an eigenvector of the matrix D(s).
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R This disposes of all infinite, homogeneous, linear media, be
r ‘ ’ they anisotropic, dispersive, lossy, with or without electric and mag-
| ' netic current source distributions of any kind.

. A specific example of a medium of this type which i1s of some
intereét will illustrate the detailed matrix calculations required by
this formulation. Consider a medium which is gyrotropic, both in capac-
itivity eand in permeability. The former type is realizeble in a plasma,
the latter in a ferrite. If the preferred direr.;tion for both is the

z-axis, the constitutive tensors teke the form

— - — -
Gl 332 0 B Ju2 0
. € = |=Je, ¢ O ‘ wom | =duy, om O (1k.16)
: ) 0 ¢ 0 0

The explicit dispersion relation for this medium 1s desired. From Eq.
(14.15), this requires the celculation of the traces of D(s) = g'lﬂu'l;‘.
A direct calculation involves considerable algebraic manipuletion, much
of which is superfluous. By taking advantage of the structure of the
constitutive tensors and of the matrix ;! » the process i1s redueible to
elementary matrix manipulations, with a spectacular saving in lsbor, as
follows,

The structure of the constitutive dyesdics invites a partition
of the matricés into transverse and longitudinal parts:

. L ¢ = o= (14.17)

where 2 and Y are 2 x 2 matrices, Defining the mmerical matrix S as
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0 =X
and noting the pmaperties
52 aa st = s (1k.19)

vhere + here denotes the transpose of the metrix, the imner structure of
the partitions can be conveniently exhibited:

=1 -1

Z'-l - el-J 328‘ Z  m -1

€ Y = By =3usS ' Yo, (14.20)
It follows from Eq. (14.19) that the inverses partition with the seme
structure: ,

Z = 2z, +12,8 Y =y, +y,8 - (1k.21)
from which it is clear that Z and Y commte with each other and with S.

This simple observation in itself leads to a considerable saving in
labor.

The propagestion vector s can also be partitioned into trans-

verse and longitudinal parts so that the structure of the / matrix mey

cS -Sb |
= [.'b*'s o ] (1k.22)

where b 15 a 2 x 1 colum and ¢ is a single element. Hence, D(s) is to

also be revealed:

bé obtained as

’ eS -Sbj|lY O cS «Sb
‘ D(ﬂ) - + ‘ + (11"‘2})
z||=-bS 0 0O yil=-bs (o]

vh;ch will have the structure
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Ds) = | ° K (1k.24)

62 s |
The traces of this matrix are expressible in terms of the par-

titions as

Tr D(s) = d+ Tr D, (1k.25)
Tr, D(s) = det D, +d Tr D - dyd, (1%.26)

Even the calculation of det Do in Eq. (14.26) can be avoided by recall-
ing that det D(s) is known to be zero: _
4o ‘
det D(s) = 0 = 4 det D, + d,SD Sd , (1k4.27)
Hence, Tr, D(s) can be expressed as
+
Tr, D(s) = (-1/a) dy SD Sd +dTrD - dd (14.28)
which involves nothing more difficult than matrix multiplication.

Now the partitions of D(s) are immediately obtainable from
Fg. (14.23):

D, = cZSYS + yZStb'S = -22Y + yszov'ts (1%.29)
a4 = zb'syso S N ¢ (14.30)
d; = =cZsYsb = cZYb (1%.31)
4, = -zcb'SYs = zcb'Y (14.32)

where the commutation relations noted sbove and the properties of Eq.

(14.19) have been used to effect the simplifications. The slight labor

involved in eveluating Bqs. (14.25) and (14.28) can be reduced still

further by noting that b+Sb = 0 since S 1s antisymmetric, that Tr S = 0
and Tr 1 = 2, that the trace is a linear operator, end that matrices
may be commted in taeking traces, as in Bq. (9.3). Making use of Hq.
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(14.21), there is obtained, with little effort,
Tr D(s) = 2¢%(2,2yy,) - Vlay 4yz,) (24.33)
Tr, D(s) = ch(yfwg) (Z§+z§) + bhzyzlyl +
? Ly (2422) + 22, (y242)) (1h.34)

In these expressions, 'b2 = 'b+'b is the square of the magnitude of the
transverse part of the propagation vector. The traces can easily be .
rewritten in terms of the elements of the constitutive tensors by noting
thet 2otz = det 7 = 1/det 270 = 1/(e2 - ¢5), with a similer expression
involving Y. _

Introducing these traces into Bg. (1%.15) g:lves'the dispersion
relation for the doubly gyrotropic medium. Its physical significance
becomes more apperent when it is written in terms of the magnitude, B,
of the propagation vector s and of the angle, @, between the direction
of propagation and the preferred direction in space.

52 = ‘b2 + 2 f - 5200520 b2 = B251n20 (14.35)

In terms of a refractive index n = g/k, the dispersion relation cen be

written after a little rearrangement as

L 2

An" -Bn“"+C = 0 (14.36)

with the coefficients given by

A = (elsin20 + e5c0520‘) (pls:lneo + %coazo) | (14.37)
B = 2‘3"5(81"1 + ezpz)cosag +

[uluB(ei-eg) + elej(uf-ug)] éinao (1k.38)

C = eguglesnes) (w-1d) (24.39)
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. Bq. (14.36) 1s a quadrstic in n°, which mey readily be solved to yield

the refractive index in any direction.
The homogeneity of the space makes this illustration a trivial

eppiicatio:n of the theory, the full power and generality of which is only

| ’barely' in evidence in this example. Here the integrations were so ele-
mentary as tq reduce the calculations to little more than simple algebra,
In general inhoungeneoﬁs media the quadratures may be inordinately mmer-
ous and cumbersome but the mechanics of setting them up and combining
them to exﬁract the desired results are much the same as in th:ls- simple

" {1lustration.
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15. CONCLUSIORS

The formalism developed in this work attempts to provide a new

' vantage point from which to view and attack a large class of problems in
electromagnetic theory. Concentrating on the invariable, characteristic
features of genersl linear xﬁedia and subordinating their less signifi-
cant details, it unifies the approach to a wide variety of such media,
to which the various standsrd, classical modes of attack have assigned a
variety of epithets -~ inhomogeneous, anisotropic, etc. The method of
analysis reformilates Maxwell's equations, provides an alterhste start-
ing point for the extraction of all significant information from a given
system. Recognizing that a full description of the medium must impl.ic-.
itly confain all the relevant information sbout the system, the formila-
tion seeks a direct route from an initial mathematical description of
the electrical constitution of the space to all the information about
the consequent phenomena which may be of interest and significance.

The present reformlation combines many disparate aralytical
techniques of great power -- those of partial differential equations, of
matrix algebra and calculus, of sbstract linear operators, of general-
1zed trensforms, and of integral equations -- which may be brought to
bear upon the. genersl problem, Acknowledging the self-defeating fea-
tures of seeking closed-form solutions for media with any but the sime

i |- plest structures, the formelism allows considersble freedom of choice of

‘ - the form in which the results are represented. Care has been taken to
preserve intact the informational .content of Maxwell's equations in.
effecting the translation to the mew language.
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Besides providing a single new equation of radically different
form to be analyzed for the solution of a problem, this work presents a

host of mathematical properties of this equation which may be used to

‘efféct 1ts solution or to derive qualitative features of the results.

The me"bhod is crowned by the prescription of an explicit sequence of
mathematical operations which, in principle, lead ultimately to the com-
plete solution for any given linear medium. This formel solution in-
cludes the fundamental existence condition characteristic of the medium,
the canplefe set of normasl modes for the system, the entire electromsg-
netic field pattern in response to any given distribution of electric
and magnetic current sources, and the power flow end energy distribution
accompenying the fields -- in short, all the information which is latent
1n‘ the description of the medium and excitations. 1In effect, there is
set up a fictive machine which incorporates the physical mechanism of
interaction of electromagnetic fields and sources, has as its input e
full pointwise description of the electrical comtent of the space, and
produces as its output all the desired results describing the phenomena
essociated with the medium. Effectively, the formal solution unifies
and systematizes the analysis of a general class of problems in electro-
magnetic theory and reduces such problems to quadratures.

The objection may be raised, and a formideble one it may well
be, that the quadratures involved in the process are of such complexity
and multiplicity ssto be prohibitive. In the same vein, the criticism may

.be made that the convergence of the expansions for the determinator and
" characterizer msy be so slow as to require an excessive mmber of terms

in the series, with all the calculations which that entails. ‘These
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objections mey be palllated by noting thet the series expsnsior method
is only one of many modes of attacking the resolvent equation end is
generally not the most efflcient one. Furthermore, the complexity of

the computations depends on the choice of the basis of representation

for the results. All possible a priori knowledge of the form of the

solution should hence be brou@t to bear upon the choice of basis func-
tions. If some members of the complete set of expansion functions reseme
ble the functions to be expressed, the number of significant terms re=-
quired in the expansions will be small, though possibly at the cost of
complicating the integrations and summations inveolved. In practice,

some compromise will be arrived at between rapidity of convergence and
complexity of calculations. The dominant role which can be played by
au;bomat:lc computers in this connection should be noted.

Eleborations and refinements of the theory mey take several
directions. The formalism could be expanded to handle rapidly time-
varying and nonstationary media in a unified way. In fact, a relativ-
istically invariant formulation could be developed by operating on four-
tensors instead of three-vectors. Although the equations governing such
cases are of a form quite different from that of the Maxwell equations
treated here, the basic ideas used in this work are evidently applicable
to any set of linear partial differential equations, whatever their
domain of definition. Toward the improvement of the efficiency of the

method, studies could be undertsken of means of estimating the remain-

‘ders of the series appearing in the resolvent when these are truncated,

" of a decision procedure for optimizing the choice of the basis of

representation, and of general methods of improving the convergence of
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the series representation of the results.
Valuable applications of the theory may be made in the analy-

sis of various inhomogeneous end anisotropic media such as that of a.

plaéma. Ultimately, this work may lead to successful attacks upon such

ﬁmdaméntal problems as the formulation of the conditions for the appear-
ence of certain wave phenomena and the development of synthesis proce=-
dures for the implementation of desired dispersion relations.
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